Bray, A., Ismay, C., Chasnovski, E., Couch, S., Baumer, B., & Cetinkaya-Rundel, M. (2022).

*Infer: Tidy statistical inference*. Retrieved from

https://github.com/tidymodels/infer
Couch, S. P., Bray, A. P., Ismay, C., Chasnovski, E., Baumer, B. S., & Çetinkaya-Rundel, M. (2021).

infer: An

R package for tidyverse-friendly statistical inference.

*Journal of Open Source Software*,

*6*(65), 3661.

https://doi.org/10.21105/joss.03661
Dua, D., & Graff, C. (2017).

*UCI machine learning repository*. University of California, Irvine, School of Information; Computer Sciences. Retrieved from

http://archive.ics.uci.edu/ml
Falbel, D., Damiani, A., Hogervorst, R. M., Kuhn, M., & Couch, S. (2022).

*Bonsai: Model wrappers for tree-based models*. Retrieved from

https://bonsai.tidymodels.org/
Hvitfeldt, E. (2022).

*Themis: Extra recipes steps for dealing with unbalanced data*. Retrieved from

https://github.com/tidymodels/themis
Iannone, R. (2023).

*Fontawesome: Easily work with font awesome icons*. Retrieved from

https://github.com/rstudio/fontawesome
Kabacoff, R. (2019). Data visualization with r. *URL Https://Rkabacoff. Github. Io/Datavis*.

Kirenz, J. (2021). Classification with tidymodels, workflows and recipes. Retrieved November 22, 2022, from

https://www.kirenz.com/post/2021-02-17-r-classification-tidymodels/#data-preparation
Kuhn, M. (2022a).

*Modeldata: Data sets useful for modeling examples*. Retrieved from

https://modeldata.tidymodels.org
Kuhn, M. (2022b).

*Tune: Tidy tuning tools*. Retrieved from

https://tune.tidymodels.org/
Kuhn, M., & Couch, S. (2022).

*Workflowsets: Create a collection of tidymodels workflows*. Retrieved from

https://github.com/tidymodels/workflowsets
Kuhn, M., & Frick, H. (2022).

*Dials: Tools for creating tuning parameter values*. Retrieved from

https://dials.tidymodels.org
Kuhn, M., & Vaughan, D. (2022).

*Parsnip: A common API to modeling and analysis functions*. Retrieved from

https://github.com/tidymodels/parsnip
Kuhn, M., Vaughan, D., & Hvitfeldt, E. (2022).

*Yardstick: Tidy characterizations of model performance*. Retrieved from

https://github.com/tidymodels/yardstick
Kuhn, M., & Wickham, H. (2020).

*Tidymodels: A collection of packages for modeling and machine learning using tidyverse principles.* Retrieved from

https://www.tidymodels.org
Kuhn, M., & Wickham, H. (2022a).

*Recipes: Preprocessing and feature engineering steps for modeling*. Retrieved from

https://github.com/tidymodels/recipes
Kuhn, M., & Wickham, H. (2022b).

*Tidymodels: Easily install and load the tidymodels packages*. Retrieved from

https://tidymodels.tidymodels.org
Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing. *Decision Support Systems*, *62*, 22–31.

Müller, K., & Wickham, H. (2023).

*Tibble: Simple data frames*. Retrieved from

https://tibble.tidyverse.org/
R Core Team. (2021).

*R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from

https://www.R-project.org/
R-Bloggers. (2017). 5 ways to measure running time of r code. Retrieved November 20, 2022, from

https://www.r-bloggers.com/2017/05/5-ways-to-measure-running-time-of-r-code/
R-Bloggers. (2020). How to use lightgbm with tidymodels. Retrieved November 20, 2022, from

https://www.r-bloggers.com/2020/08/how-to-use-lightgbm-with-tidymodels/
Robinson, D., Hayes, A., & Couch, S. (2022).

*Broom: Convert statistical objects into tidy tibbles*. Retrieved from

https://broom.tidymodels.org/
Silge, J., Chow, F., Kuhn, M., & Wickham, H. (2022).

*Rsample: General resampling infrastructure*. Retrieved from

https://rsample.tidymodels.org
Vaughan, D., & Couch, S. (2022).

*Workflows: Modeling workflows*. Retrieved from

https://github.com/tidymodels/workflows
Wickham, H. (2016).

*ggplot2: Elegant graphics for data analysis*. Springer-Verlag New York. Retrieved from

https://ggplot2.tidyverse.org
Wickham, H. (2022).

*Forcats: Tools for working with categorical variables (factors)*. Retrieved from

https://forcats.tidyverse.org/
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., … van den Brand, T. (2024).

*ggplot2: Create elegant data visualisations using the grammar of graphics*. Retrieved from

https://ggplot2.tidyverse.org
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023).

*Dplyr: A grammar of data manipulation*. Retrieved from

https://dplyr.tidyverse.org
Wickham, H., & Girlich, M. (2022).

*Tidyr: Tidy messy data*. Retrieved from

https://tidyr.tidyverse.org
Wickham, H., & Henry, L. (2023).

*Purrr: Functional programming tools*. Retrieved from

https://purrr.tidyverse.org/
Wickham, H., Hester, J., & Bryan, J. (2022).

*Readr: Read rectangular text data*. Retrieved from

https://readr.tidyverse.org
Wickham, H., Pedersen, T. L., & Seidel, D. (2023).

*Scales: Scale functions for visualization*. Retrieved from

https://scales.r-lib.org
Wilke, C. O., & Wiernik, B. M. (2022).

*Ggtext: Improved text rendering support for ggplot2*. Retrieved from

https://wilkelab.org/ggtext/